II B. TECH I SEMESTER REGULAR EXAMINATIONS, FEB - 2022 DATA STRUCTURES
 (Common to CSE, INF, CSM, CIC, CSO, and AID)

Time: $\mathbf{3}$ Hours
Max. Marks: 70
Note: Answer ONE question from each unit ($\mathbf{5 \times 1 4}=\mathbf{7 0}$ Marks)

UNIT-I

1. a) What is Linear Search? Explain Linear search algorithm with an [7M] example.
b) Explain about Big O, Omega and Theta notations with necessary examples.
(OR)
2. a) Give an algorithm for quick sort and explain its time complexity. Trace the algorithm for the following data:
```
65 70 75 80 85 60 55 50 45
```

b) Define Linear List. Explain with an example the representation of Linear Lists.

UNIT-II
3. a) Explain the procedure to evaluate postfix expression. Evaluate [7M] the following Postfix expression $734+-245 /+$ * $6 / 7+$.
b) Implement count(), search(), concat() operations on Single linked list.
(OR)
4. a) Explain Circular linked list with example.
b) Discuss the representation of Double linked Lists with an [7M] example.

UNIT-III

5. a) Explain Tree Traversal Techniques with examples.
b) Define Binary Search Tree. Construct Binary Search Tree for the following elements: $45,39,56,12,34,78,32,10,89,54,67,81$
(OR)
6. a) Define Threaded Binary Tree. Explain One-way threading with an example.
b) Explain Max Heap with suitable example.
7. a) Explain Depth First algorithm with an example.
b) Compute the Minimum Cost Spanning Tree for the given graph using Prims's Algorithm

(OR)
8. a) Explain Dijkstra's algorithm with an example.
b) Explain all pair shortest path Floyd Warshall's algorithm with an example.

UNIT-V

9. a) Define Quadratic Probing. Using Quadratic probing, insert the keys $72,27,36,24,63,81,92$, and 101 into the table. Assume table size 10.
b) Explain Collision Resolution by Double Hashing.
(OR)
10. a) Explain Folding method of Hashing with an example.
b) Discuss Brute Force Pattern Algorithm with an example.
